Skip to content

Xata 节点#

使用 Xata 节点可以将 Xata 作为 AI 记忆服务器使用。 本页列出了 Xata 节点支持的操作,以及相关资源的链接。

凭据

您可以在此处找到该节点的认证信息

/// 注意 | 子节点中的参数解析 子节点在使用表达式处理多个项目时的行为与其他节点不同。

大多数节点(包括根节点)会接收任意数量的输入项,处理这些项目,然后输出结果。您可以使用表达式来引用输入项,节点会依次为每个项目解析表达式。例如,给定五个 name 值作为输入,表达式 {{ $json.name }} 会依次解析为每个名称。

而在子节点中,表达式总是解析为第一个项目。例如,给定五个 name 值作为输入,表达式 {{ $json.name }} 总是解析为第一个名称。 ///

节点参数#

  • 会话 ID: 输入用于在工作流数据中存储记忆的 ID。
  • 上下文窗口长度: 输入要考虑的先前交互数量作为上下文。

模板和示例#

Building Your First WhatsApp Chatbot

by Jimleuk

View template details
Scrape and summarize webpages with AI

by n8n Team

View template details
Very quick quickstart

by Deborah

View template details
Browse Xata integration templates, or search all templates

相关资源#

更多关于该服务的信息,请参考 LangChain 的 Xata 文档

查看 n8n 的高级 AI 文档。

单一记忆实例#

If you add more than one Xata node to your workflow, all nodes access the same memory instance by default. Be careful when doing destructive actions that override existing memory contents, such as the override all messages operation in the Chat Memory Manager node. If you want more than one memory instance in your workflow, set different session IDs in different memory nodes.

AI glossary#

  • completion: Completions are the responses generated by a model like GPT.
  • hallucinations: Hallucination in AI is when an LLM (large language model) mistakenly perceives patterns or objects that don't exist.
  • vector database: A vector database stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.
  • vector store: A vector store, or vector database, stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.